simulate based on a vector of parameters (including both time-varying change parameters, initial conditions, and other dynamical parameters), for fitting or forecasting
vector of parameters - on the link (log/logit) scale as appropriate; these are the parameters that will be adjusted during calibration
starting parameters (and structure). Parameters
that are part of the params_pansim parameter vector can
be specified within the params element (with prefixes
if they are transformed); other parameters can include
distributional parameters or time-varying parameters
baseline parameters (an object (vector?) of
type params_pansim containing all of the parameters
needed for a simulation; some may be overwritten during the
calibration process)
starting date for sims (far enough back to allow states to sort themselves out)
ending date
arguments passed to sim_fun
parameters to fix
stochastic settings (see run_sim)
dates on which to enable stochasticity (vector of dates with names 'proc' and 'obs')
additional arguments to pass to
run_sim
arguments passed to
aggregate.pansim
specify values to return (aggregated simulation, or just the values?)
function for simulating a single run
(e.g. run_sim_break,
run_sim_mobility)
calculate and include R(t) in prediction/forecast?
print debugging messages?
extra args (ignored)
Other classic_macpan:
add_d_log(),
add_updated_vaxrate(),
aggregate_agecats(),
calibrate_comb(),
calibrate(),
check_age_cat_compatibility(),
check_contact_rate_setting(),
col_multiply(),
condense_age(),
condense_params_vax(),
condense_state(),
condense_vax(),
dev_is_tikz(),
do_step(),
expand_params_age(),
expand_params_desc_age(),
expand_params_desc_variant(),
expand_params_desc_vax(),
expand_params_mistry(),
expand_params_variant(),
expand_params_vax(),
expand_state_age(),
expand_state_vax(),
expand_stateval_testing(),
fix_pars(),
fix_stored(),
forecast_ensemble(),
getData(),
get_GI_moments(),
get_Gbar(),
get_R0(),
get_doses_per_day(),
get_evec(),
get_kernel_moments(),
get_opt_pars(),
get_r(),
invlink_trans(),
make_betavec(),
make_beta(),
make_jac(),
make_ratemat(),
make_state(),
make_test_wtsvec(),
make_vaxrate(),
mk_Nvec(),
mk_agecats(),
mk_contact_rate_setting(),
mk_mistry_Nvec(),
mk_pmat(),
mk_vaxcats(),
mle_fun(),
non_expanded_states,
rExp(),
read_params(),
repair_names_age(),
restore(),
run_sim_ageify(),
run_sim_break(),
run_sim_loglin(),
run_sim_mobility(),
run_sim_range(),
run_sim(),
show_ratemat(),
testify(),
texify(),
trans_state_vars(),
update_contact_rate_setting(),
update_foi(),
update_params_mistry(),
vis_model(),
write_params()
ff <- ont_cal1$forecast_args
op <- ff$opt_pars
p <- unlist(op)
params <- fix_pars(read_params("ICU1.csv"))
forecast_sim(p, op, base_params=params,ff$start_date, ff$end_date,
time_args=ff$time_args)
#> # A tibble: 1,722 × 3
#> date var value
#> <date> <chr> <dbl>
#> 1 2020-01-30 S 999945
#> 2 2020-01-30 E 23
#> 3 2020-01-30 I 30
#> 4 2020-01-30 H 1
#> 5 2020-01-30 ICU 1
#> 6 2020-01-30 R 0
#> 7 2020-01-30 hosp NA
#> 8 2020-01-30 X 0
#> 9 2020-01-30 death NA
#> 10 2020-01-30 D 0
#> # … with 1,712 more rows