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Speed: r

I We measure epidemic speed using little r :
I The ratio of the change in disease impact to the amount of

disease impact

I Units: [1/time]

I Disease increases like ert

I Time scale is C = 1/r



Ebola outbreak

0 50 100 150
0

100
200
300
400 R0 = 1.5

I
(t
)

Days, t

0
100
200
300
400 R0 = 2.0

I
(t
)

0
100
200
300
400 R0 = 2.5

I
(t
)

0 200 400 600 800 1000 1200
100

101

102

103

104

105

106

Days, t

In
fe
ct
ed

,
I
(t
)

 

 
R0 = 2.5
R0 = 2.0
R0 = 1.5

C ≈ 1month. Sort-of fast.



HIV in sub-Saharan Africa
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C ≈ 18month. Horrifyingly fast.



Strength: R

I We describe epidemic strength with big R

I Number of potential new cases per case
I Not accounting for proportion susceptible

I To eliminate disease, we must:
I Reduce effective reproduction by a factor of R



R and equilibrium

I If we have R new cases per case when everyone is susceptible

I And 1 case per case (on average) at equilibrium:
I Proportion susceptible at equilibrium is S = 1/R

I Proportion affected at equilibrium is V = 1− 1/R



R and control



Coronavirus

I What we see clearly is r

I What we rush to calculate is R

I How do we do this?

I Why do we do this?



Quickness: g(τ)

Approximate generation intervals
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generations of the
disease

I Interval between
“index” infection
and resulting
infection

I Do fast disease
generations mean more
danger or less danger?
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Conditional effect of quickness

I Given the reproductive number R
I quicker disease means faster growth rate r

I More danger

I Given the growth rate r
I quicker disease means smaller R

I Less danger



Generations and R

0 2 4 6 8

10
20

30
40

50
60

70

Time (weeks)

W
ee

kl
y 

in
ci

de
nc

e

●

●

Reproduction number: 1.65



Generations and R

0 2 4 6 8

10
20

30
40

50
60

70

Time (weeks)

W
ee

kl
y 

in
ci

de
nc

e

●

●

Reproduction number: 1.4



Ebola outbreak
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HIV in sub-Saharan Africa
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Linking framework

I Epidemic speed (r) is a product:
I quickness ×

I epidemic strength

I WRONG



Linking framework

I Epidemic speed (r) is a product:
I (something to do with) quickness ×

I (something to do with) epidemic strength

I Strength (R) is therefore (sort-of) a quotient
I More quickness implies less strength

I . . . if speed is known
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Box models
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Renewal equation

I A broad framework that covers a wide range of underlying
models

I

i(t) = S(t)

∫
k(τ)i(t − τ) dτ

I i(t) is the rate of new infections (per-capita incidence)

I S(t) is the proportion of the population susceptible

I k(τ) measures how infectious a person is (on average) at time
τ after becoming infected

I For invasion, treat S as constant



Infection kernel

I k(τ) is the expected rate at
which you infect at time τ
after being infected

I
∫
τ

k(τ)dτ is the expected
number of people infected:

I R the effective
reproductive number

I k(τ)/R is a distribution:

I g(τ), the intrinsic
generation distribution
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Euler-Lotka equation

I If we neglect S , we expect exponential growth

I 1 =
∫

k(τ) exp(−rτ) dτ
I i.e., the total of discounted contributions is 1

I 1/R =
∫

g(τ) exp(−rτ) dτ

I Note that b(τ) = k(τ) exp(−rτ) is also a distribution
I The initial “backwards” generation interval



Interpretation: generating functions

I 1/R =
∫

g(τ) exp(−rτ) dτ

I J Wallinga, M Lipsitch; DOI:
10.1098/rspb.2006.3754
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Interpretation: “effective” generation times

I Define Ĝ
I

R = exp(r Ĝ )

I Then:
I

1/R =

∫
g(τ) exp(−rτ) dτ

I
exp(−r Ĝ ) = 〈exp(−rτ)〉g .

I A filtered mean:
I The discounted value of Ĝ is the expectation of the

discounted values across the distribution



Example: Post-death transmission and safe burial

I How much Ebola spread occurs
before vs. after death

I Highly context dependent

I Funeral practices, disease
knowledge

I Weitz and Dushoff Scientific
Reports 5:8751.



Standard disease model
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Disease model including post-death transmission
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Scenarios
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Conclusions

I Different parameters can produce indistinguishable early
dynamics

I More after-death transmission implies
I Higher R0

I Larger epidemics

I Larger importance of safe burials
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Limitations of effective time

I The filtered mean has nice theoretical and intuitive properties

I Practically, the effective generation time can be confusing

I How is
I R = exp(r Ĝ )

I Consistent with the result from ODEs
I R = 1 + r Ḡ ?

I Ĝ changes with r , sometimes a lot



Gamma approximation

I If g has a gamma distribution, then:

I R ≈ (1 + rκḠ )1/κ

I κ is the dispersion (the squared coefficient of variation of the
generation distribution)

I How good is the approximation?

I Park et al., Epidemics DOI:10.1101/312397



Fitting to Ebola

I Simulate generation intervals based on data and approach
from WHO report

I Use both lognormals and gammas
I WHO used gammas

I Lognormals should be more challenging



Approximating the distribution

Lognormal SEIR
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Approximating the curve
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Effective dispersion

I Define κ̄:

I R = (1 + r κ̂Ḡ )1/κ̂ ≡ X (r Ḡ ; 1/κ̂)

I Conceptually more confusing than effective generation time

I Practically straightforward
I For many applications κ̄ changes very little with r

I Doesn’t work where you wouldn’t expect it to:
I syphilis, sexual transmission of Ebola



Compound-interest interpretation

I R = (1 + rκḠ )1/κ ≡ X (r Ḡ ; 1/κ)

I X is the compound-interest approximation to the exponential
I Linear when κ = 1 (i.e., when g is exponential)

I Approaches exponential as κ→ 0



Gamma approximation
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Gamma approximation

Approximate generation intervals
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Gamma approximation

Approximate generation intervals
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Qualitative response

I For a given value of Ḡ , smaller values of κ mean:
I less variation in generation interval

I less compounding of growth

I greater R required for a given r



Linking framework

I Epidemic speed (r) is a product:
I (something to do with) quickness ×

I (something to do with) epidemic strength

I In particular:
I r ≈ (1/Ḡ )× `(R; κ̄)

I ` is the inverse of X



Evaluating

I Model fits to exponential
case data are essentially
estimating R using this
quotient

I Can be evaluated and
compared using (implicit or
explicit) estimates of r , Ḡ
and κ̄

Park et al., DOI:
10.1101/2020.01.30.20019877
(preprint)
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Assumptions



Assumptions



Assumptions



Propagating error
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Propagating error
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A false dichotomy

I Why are people scrambling to estimate R and mostly ignoring
r?
I History

I Modelers gotta model



The strength paradigm

I R > 1 is a threshold

I If we can reduce transmission by a constant factor of θ > R,
disease can be controlled

I In general, we can define θ as a (harmonic) mean of the
reduction factor over the course of an infection
I weighted by the intrinsic generation interval

I Epidemic is controlled if θ > R

I More useful in long term (tells us about final size, equilibrium)



The speed paradigm

I r > 0 is a threshold

I If we can reduce transmission at a constant hazard rate of
φ > r , disease can be controlled

I In general, we can define φ as a (very weird) mean of the
reduction factor over the course of an infection
I weighted by the backward generation interval

I Epidemic is controlled if φ > r

I More useful in short term (tells us about, um, speed)



Epidemic strength (present)
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I R, the epidemic
strength, is the area
under the curve.



Strength of intervention
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Different interventions (present)
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Different interventions (present)
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Epidemic speed
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Epidemic speed
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Speed of intervention
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Different interventions (present)
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I Sometimes it’s easier to
estimate strength,
sometimes speed



Measuring the intervention



Measuring the intervention

I We imagine an intervention with potentially variable effect
over the course of infection, L(τ)

I Assume the intervention takes
I k(τ)→ k̂(τ) = k(τ)/L(τ)



Measuring intervention strength

I Define intervention strength θ = R/R̂ – the proportional
amount by which the intervention reduces transmission.

I θ = 1/ 〈1/L(τ)〉g(τ)

I θ is the harmonic mean of L, weighted by the generation
distribution g .

I Outbreak can be controlled if θ > R



Measuring intervention speed

I Define intervention speed φ = r − r̂ – the amount by which
the intervention slows down spread.

I We then have:

I 1 =

〈
exp(φτ)

L(τ)

〉
b(τ)

I φ is sort of a mean of the hazard associated with L
I Because L(t) = exp(ht) when hazard is constant

I Averaged over the initial backwards generation interval

I Outbreak can be controlled if φ > r .



The strength paradigm

I k(τ) = Rg(τ)
I g is the intrinsic generation interval

I R is the strength of the epidemic

I If L(τ) ≡ L, then θ = L is the strength of the intervention

I In general, θ is a (harmonic) mean of L
I weighted by g(τ), but not affected by R.

I Epidemic is controlled if θ > R



The speed paradigm

I k(τ) = exp(rτ)b(τ),
I r is the speed of the epidemic

I b is the initial backward generation interval

I If h(τ) ≡ h, then φ = h is the speed of the intervention

I In general, φ is a (weird) mean of h
I weighted by b(τ), but not affected by r .

I Epidemic is controlled if φ > r



HIV

I The importance of transmission speed to HIV control is easier
to understand using the speed paradigm
I We know the speed of invasion

I ≈ 0.7/yr

I Characteristic scale ≈ 1.4yr

I And can hypothesize the speed of intervention
I Or aim to go fast enough



HIV test and treat
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Coronavirus outbreak

I What we know well is the speed of the outbreak

I What do we think if the pathogen is actually quicker than we
thought?
I e.g., Nishiura et al.

I It has less strength (easier to control by vaccination)

I Control by identification and isolation may be a little harder?
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Measuring generation intervals

I Ad hoc methods

I Error often not propagated

I Importance of heterogeneity



Generations through time

I Generation intervals can be estimated by:
I Observing patients:

I How long does it take to become infectious?

I How long does it take to recover?

I What is the time profile of infectiousness/activity?

I Contact tracing
I Who (probably) infected whom?

I When did each become infected?

I — or ill (serial interval)?



Which is the real interval?

I Contact-tracing intervals look systematically different,
depending on when you observe them.

I Observed in:
I Real data, detailed simulations, simple model

I Also differ from intrinsic (infector centered) estimates



Types of interval

I Define:
I Intrinsic interval: How infectious is a patient at time τ after

infection?

I Forward interval: When will the people infected today infect
others?

I Backward interval: When did the people who infected people
today themselves become infected?

I Censored interval: What do all the intervals observed up until
a particular time look like?

I Like backward intervals, if it’s early in the epidemic



Growing epidemics

I Generation intervals look shorter
at the beginning of an epidemic

I A disproportionate number
of people are infectious right
now

I They haven’t finished all of
their transmitting

I We are biased towards
observing faster events
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Backward intervals

Champredon and Dushoff, 2015. DOI:10.1098/rspb.2015.2026
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Generations in space

I How do local interactions affect realized generation intervals?



Surprising results

I We tend to think that heterogeneity leads to underestimates
of R, which can be dangerous.

I R on networks generally smaller than values estimated using r .
I Trapman et al., 2016. JRS Interface

DOI:10.1098/rsif.2016.0288



Generation-interval perspective

I Modelers don’t usually question the intrinsic generation
interval

I But spatial network structure does change generation
intervals:
I Local interactions

I =⇒ wasted contacts

I =⇒ shorter generation intervals

I =⇒ smaller estimates of R.



Observed and estimated intervals

Locally corrected GI

• based on degree distribution
and contact rate [3]

• depends on between-individual
variation

Intrinsic GI
• patient-based

• infectiousness profile of an
infected individual
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probability)

Effective GI

• reflects network structure, but
corrects for time censoring

• gives the correct link between r
and R

Observed GI in early epidemic
• contact-tracing based

• censored at observation time

Temporal correction (weight observed periods by exp(rτ))
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Park et al. DOI: 10.1101/683326 (preprint)
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Serial intervals



Serial intervals

I Do serial intervals and generation intervals have the same
distribution?

I It seems that they should: they describe generations of the
same process
I But serial intervals can even be very different

I Even negative! You might report to the clinic with flu before
me, even though I infected you

I For rabies, we thought that serial intervals and generation
intervals should be the same
I Symptoms are closely correlated with infectiousness





Rabies

I If symptoms always start before infectiousness happens, then
serial interval should equal generation interval:
I incubation time + extra latent time + waiting time

I extra latent time + waiting time + incubation time



Serial
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Incubation Period: Non−Biter

Incubation Period: Biter
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