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Abstract4

McMasterPandemic is an R package that provides tools for simulating and forecast-5

ing infectious disease outbreaks, using compartmental epidemic models. The primary6

mechanistic framework is a susceptible-exposed-infectious-removed (SEIR) model, with7

additional compartments for individuals in acute and intensive care units in hospitals.8
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1 Installation19

Use remotes::install_github("bbolker/McMasterPandemic") to install the latest ver-20

sion of the package.21

library(McMasterPandemic)

In this vignette we’ll also use some other packages:22
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library(ggplot2); theme_set(theme_bw())

library(cowplot)

2 Data requirements23

Parameters To run simulations, a few parameter values must be specified. Set these24

by editing the example params file, which is converted to a params_pansim object by25

read_params(). In the example, the time unit is assumed to be days.26

The term “in acute care” means “in hospital but not in the intensive care unit (ICU)”.27

params1 <- read_params("ICU1.csv")

(by default read_params looks first in the working directory for CSV files, then in the params28

directory installed with the package (system.file("params", package="McMasterPandemic")).29

All the built-in parameter files can be found as follows:30

folder <- system.file("params", package="McMasterPandemic")

list.files(folder)

#> [1] "CI_base.csv" "CI_updApr1.csv"

#> [3] "ICU_diffs.csv" "ICU1.csv"

#> [5] "midas_estimates_ali.csv" "midas_estimates.csv"

#> [7] "mistry-cmats" "PHAC_testify.csv"

#> [9] "PHAC.csv" "stanford_estimates.csv"

If you want to edit one of these files, you need to copy it to your working directory first. To31

find the full path to ICU1.csv, for example, use:32

system.file("params/ICU1.csv", package="McMasterPandemic")

#> [1] "/Users/runner/work/_temp/Library/McMasterPandemic/params/ICU1.csv"

If p is a parameter set (e.g., the result of read_params), then print(p, describe=TRUE)33

or, equivalently, describe_params(p) will return a data frame with a column giving the34

meaning of each parameter.35

knitr::kable(describe_params(params1))
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symbol value meaning
beta0 1 Baseline (non-intervention) transmission across categories
Ca 0.667 relative asymptomatic transmission (or contact)
Cp 1 relative presymptomatic transmission (or contact)
Cm 1 relative mildly symptomatic transmission (or contact)
Cs 1 relative severely symptomatic transmission (or contact)
alpha 0.333 Fraction of cases asymptomatic
sigma 0.192 1/time in exposed class
gamma a 0.143 1/time for asymptomatic recovery
gamma m 0.143 1/time for mildly symptomatic recovery
gamma s 0.175 1/time for severely symptomatic transition to hospital/death
gamma p 2 1/time in pre-symptomatic class
rho 0.1 1/time in hospital (acute care)
delta 0 Fraction of acute-care cases that are fatal
mu 0.956 Fraction of symptomatic cases that are mild (or moderate)
N 1e+06 Population size
E0 5 Initial number exposed
nonhosp mort 0 probability of mortality without hospitalization
iso m 0 Relative self-isolation/distancing of mild cases
iso s 0 Relative self-isolation/distancing of severe cases
phi1 0.76 Fraction of hospital cases to ICU
phi2 0.5 Fraction of ICU cases dying
psi1 0.05 Rate of ICU back to acute care
psi2 0.125 Rate of ICU to death
psi3 0.2 Rate of post-ICU to discharge
c prop 0.1 fraction of incidence reported as positive tests
c delay mean 11 average delay between incidence and test report
c delay cv 0.25 coefficient of variation of testing delay
proc disp 0 dispersion parameter for process error (0=demog stoch only)
zeta 0 phenomenological heterogeneity parameter

36

The summary method for params_pansim objects returns the initial exponential growth37

rate (r0), the doubling time (log 2/r0), the mean generation interval (G), and the basic38

reproduction number39

R0 = β0

{
α
Ca

γa
+ (1− α)

[
Cp

γp
+ µ(1− isom)

Cm

γm
+ (1− µ)(1− isos)

Cs

γs

]}
.

knitr::kable(round(t(summary(params1)),2))

r0 R0 Gbar CFR gen dbl time
0.23 6.52 12.19 0.04 3.04

40

The components of R0 (the reproduction number associated with each infectious compart-41

ment) can also be extracted.42
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knitr::kable(round(t(get_R0(params1, components=TRUE)),2))

asymptomatic pre-symptomatic mild severe
1.56 0.33 4.46 0.17

43

It is also possible to change parameter settings without editing a parameter file, via the44

fix_pars() function. For example:45

params2 <- fix_pars(params1, target = c(R0 = 5, Gbar = 5.2))

knitr::kable(round(t(summary(params2)),2))

r0 R0 Gbar CFR gen dbl time
0.39 5 5.2 0.04 1.79

46

Initial conditions The initial state must also be set, but it is sufficient to specify the47

parameter set (a params_pansim object), in which case the population size and initially ex-48

posed population will be taken from the parameters (in this case all non-exposed individuals49

are assumed to be susceptible).50

state1 <- make_state(params=params1)

Start and end dates Dates on which the simulation starts and ends must be stated. If51

there are no observations that you are aiming to match, then these dates are arbitrary and52

only the length of time matters.53

sdate <- "2020-02-10"

edate <- "2020-06-01"

3 Running a simulation54

A simple deterministic simulation is run as follows, and returns a pansim object. The55

summary method computes the times and magnitudes of peak demands on acute care (H)56

and intenstive care (ICU), and the basic reproduction number R0.57

res1 <- run_sim(params=params1, state=state1, start_date=sdate, end_date=edate)

summary(res1)

#> peak_ICU_date peak_ICU_val peak_H_date peak_H_val R0

#> 1 2020-04-21 2695 2020-04-20 7846 6.518009

The plot method for pansim objects returns a ggplot object, optionally on a log scale.58

Page 4 of 20



plot_grid(plot(res1, log=TRUE), ## logarithmic

plot(res1)) ## linear
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3.1 Stochasticity61

The effects of observation error are easy to explore with the stoch argument to run_sim.62

The obs_disp parameter is the dispersion parameter for a negative binomial (if the mean63

and variance are µ and σ2, respectively, then σ2 = µ+ µ2

obs_disp
).64

set.seed(101)

params1obs <- update(params1, obs_disp=200)

res1obs <- run_sim(params1obs, state1, start_date=sdate, end_date=edate,

stoch=c(obs=TRUE, proc=FALSE))

summary(res1obs)

#> peak_ICU_date peak_ICU_val peak_H_date peak_H_val R0

#> 1 2020-04-28 2760 2020-04-21 8345 6.518009

plot_grid(plot(res1obs, log=TRUE),

plot(res1obs))
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66

To simulate with process error, use stoch=c(..., proc=TRUE). By default, this simu-67

lates only demographic stochasticity, which has little effect in a large epidemic.68

params1proc <- update(params1,E0=200,proc_disp=0) ## demog stoch only

res1proc <- run_sim(params1proc, start_date=sdate, end_date=edate,

stoch=c(obs=FALSE, proc=TRUE))

Making proc_disp positive simulates with additional process noise:69

params1proc2 <- update(params1,E0=200, proc_disp=0.5, obs_disp=5)

res1proc2 <- run_sim(params1proc2, start_date=sdate, end_date=edate,

stoch=c(obs=FALSE, proc=TRUE))

plot_grid(plot(res1proc2, log=TRUE), plot(res1proc2))
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Technical note. Demographic noise is included by calculating probabilities from the rates72

and then drawing a multinomial sample to determine how many individuals move from one73

compartment to each of the others. With pure demographic noise, the CV is very small74

with only ∼ 1000 individuals moving among compartments. Process dispersion (proc_disp;75

“overdispersed demographic stochasticity”) is implemented using pomp::reulermultinom,76

which adds gamma white noise to the event rates. For some discussion of this, see p. 274 and77

Appendix A of the “plug-and-play” paper by He et al. (2010, J. R. Soc. Interface 7, 271–78

283, doi:10.1098/rsif.2009.0151. [DE: The intensity of the gamma white noise process79

(proc_disp) has units ( cf. σSE in He et al.); it would be easier to think about the cofficient80

of variation (CV) rather than standard deviation (sd).]81

[DE: Notes scribbled from discussion with BB: To get CIs on a forecast, we could hack82

by adjusting proc_disp until getting CIs that are plausibly wide; estimating this number is83

a can of worms. A slighty more principaled way to decide on that number: fit params, then84

run sims with different combinations of obs and proc noise that yield noise like in the data:85

then infer how observed noise is divided btw proc and measurement error.]86

[DE: DC commented on 19 Apr 2020 (‘MP updates’ thread): “5/ I have had the same87

question for a while regarding noise amplitude. . . I usually look at the variance of the data88

as a guidance, but never did anything formal. 6/ I often find myself starting with MCMC,89

just to give it up for ABC or something else a few days/weeks down the road because I90

end up spending way too much time in trying to fix more or less technical issues regarding91

convergence (I use Stan nearly all the time, maybe that’s why. . . ).”]92
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3.2 Time-dependent transmission rate93

Implementing known changes in transmission rate (e.g., resulting from social distancing94

measures) is straighforward via the time_pars argument. The following reduces β0 (and95

hence R0) to 50% of its original value on 10 March 2020, and to 10% of its original value on96

25 March 2020.97

Setting ndt=20 forces 20 intermediate time steps to occur between each saved step. (Try98

it with ndt=1 to see why this is a good idea.)99

Setting condense=FALSE retains all variables in the output, rather than collapsing into100

a single I class etc.101

time_pars <- data.frame(Date=c("2020-03-10","2020-03-25"),

Symbol=c("beta0","beta0"),

Relative_value=c(0.5,0.1))

restimedep <- run_sim(params1,state1,start_date=sdate,end_date=edate,

params_timevar=time_pars,ndt=20, condense=FALSE)

summary(restimedep)

#> peak_ICU_date peak_ICU_val peak_H_date peak_H_val R0

#> 1 2020-04-11 417 2020-04-09 1181 6.518009

plot_grid(plot(restimedep, log=TRUE, condense=FALSE),

plot(restimedep, condense=FALSE))
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4 Changing parameters104

Some parameters you might wish to change are not directly available in the parameter file.105

Instead, you can adjust them using fix_pars(). For example, if you would like to change106

the default value of R0 implied in the parameter list params1 you can do the following.107

print(summary(params1))

#> r0 R0 Gbar CFR_gen dbl_time

#> 0.2278149 6.5180089 12.1897402 0.0352000 3.0425898

## Change R0 to 2

newparams1 <- fix_pars(params1, target=c(R0=2))

print(summary(newparams1))

#> r0 R0 Gbar CFR_gen dbl_time

#> 0.06649208 2.00002038 12.18974018 0.03520000 10.42450796

[DE: See refactor.Rmd for functions not yet described here.]108

5 Calibration109

In a typical epidemic forecasting application, we have imperfect information about the pa-110

rameters and a time series of reported events (e.g., cases, hospitalizations, deaths, etc.). Our111

goal is to predict the future course of the outbreak, and to determine how it will differ under112

various intervention scenarios.113

The natural approach is to find a set of parameters that lies within the estimated con-114

straints and best fits the observed part of the epidemic. This is referred to as “calibrating”115

the model to the data.116

Unsurprisingly, there is a function calibrate() for doing just this.117

Imagine that the simulated data saved in res1obs were the observed data to which want118

to fit the model. We can calibrate to these data as follows.119

Note that calibrate() requires the data come in “long form”, which means that for120

each date on which we have data, there are separate rows for each type of data (report,121

death, hospitalization, etc). This is in contrast to “wide form”, for which there is one row122

for each date, and separate columns for each observed variable.123

library(dplyr)
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## pull out only the reported cases and convert to long form:

report_data <- (res1obs

%>% mutate(value=round(report), var="report")

%>% select(date, value, var)

%>% na.omit()

)

head(report_data)

#> date value var

#> 16 2020-02-25 1 report

#> 17 2020-02-26 1 report

#> 18 2020-02-27 0 report

#> 19 2020-02-28 1 report

#> 20 2020-02-29 1 report

#> 21 2020-03-01 6 report

## beta0 is the only parameter we’re going to optimize:

opt_pars <- list(params = c(beta0=0.1))

## fit beta0 based on the report data:

fitted.mod <- calibrate(

data = report_data

, start_date = sdate

## skip breaks that are present by default:

, time_args = list(break_dates = NULL)

, base_params = params1obs

, opt_pars = opt_pars

##, debug_plot = TRUE # instructive plotting during optimization

)

## plot the resulting fit

plot(fitted.mod, data=report_data)
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## spit out fitted parameters (in this case, just beta0)

coef(fitted.mod, "fitted")

#> $params

#> beta0

#> 1.000625

That worked well, given that the value of beta0 used for the simulation was 1. You might125

want to try running the above interactive without commenting out “debug_plot = TRUE”.126

This will allow you to see the process of fitting the model to the data. Note, however, that127

this instructive visualization of the optimization process will slow down the optimization by128

an order of magnitude.129

Let’s now now try to fit the model to both reports and deaths. It is easiest to create the130

required long-form data frame using the pivot_longer function in the tidyr package.131

library(tidyr)
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report_death_data <- (res1obs

%>% select(date, report, death)

%>% pivot_longer(names_to = "var", -date)

%>% mutate(value=round(value))

%>% na.omit()

)

head(report_death_data, n=12)

#> # A tibble: 12 x 3

#> date var value

#> <date> <chr> <dbl>

#> 1 2020-02-11 death 0

#> 2 2020-02-12 death 0

#> 3 2020-02-13 death 0

#> 4 2020-02-14 death 0

#> 5 2020-02-15 death 0

#> 6 2020-02-16 death 0

#> 7 2020-02-17 death 0

#> 8 2020-02-18 death 0

#> 9 2020-02-19 death 0

#> 10 2020-02-20 death 0

#> 11 2020-02-21 death 0

#> 12 2020-02-22 death 0

Now let’s fit to both reports and deaths.132

## beta0 is the only parameter we’re going to optimize:

opt_pars <- list(params = c(beta0=0.1))

fitted.mod <- calibrate(

data = report_death_data

, start_date = sdate

## skip breaks that are present by default:

, time_args = list(break_dates = NULL)

, base_params = params1obs

, opt_pars = opt_pars

##, debug_plot = TRUE # instructive plotting during optimization

)

plot(fitted.mod, data=report_death_data)
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If you wish, you can plot just the data being fitted, and the fitted model, via:134

plot(fitted.mod, data=report_death_data,

predict_args=list(keep_vars=c("report","death")))
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135

That fit looks remarkably good. Let’s see how good:136
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coef(fitted.mod, "fitted") # spit out fitted parameters

#> $params

#> beta0

#> 1.000625

summary(coef(fitted.mod))

#> r0 R0 Gbar CFR_gen dbl_time

#> 0.2279195 6.5220826 12.1897402 0.0352000 3.0411926

Amazing: our fitted beta0 is exactly the value used in the simulation that generated the137

data. Note that in the summary at the end, r0 refers to the initial exponential growth rate138

from the fitted model. This provides an alternative to the epigrowthfit package for fitting139

epidemic growth rates.140

Finally, consider the case where we have both observation and process noise. Fitting to141

these data won’t do as well, because calibrate() does not have a way of fitting to process142

noise. Consequently, the quality of our fit can be expected to be worse. Of course, real data143

always contain process noise. . .144

report_data <- (res1proc2

%>% mutate(value=round(report), var="report")

%>% select(date, value, var)

%>% na.omit()

)

## beta0 is the only parameter we’re going to optimize:

opt_pars <- list(params = c(beta0=0.1))

fitted.mod <- calibrate(

data = report_data

, start_date = sdate

## skip breaks that are present by default:

, time_args = list(break_dates = NULL)

, base_params = params1proc2

, opt_pars = opt_pars

##, debug_plot = TRUE # instructive plotting during optimization

)

plot(fitted.mod, data=report_data)
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coef(fitted.mod, "fitted") # spit out fitted parameters

#> $params

#> beta0

#> 0.92375

summary(coef(fitted.mod,"all"))

#> r0 R0 Gbar CFR_gen dbl_time

#> 0.2147032 6.0210107 12.1897402 0.0352000 3.2283965

As above, you can plot just the data being fitted, and the fitted model, via:146

plot(fitted.mod, data=report_data, predict_args=list(keep_vars="report"))
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5.1 Troubleshooting calibrations149

If you find that the fitted model trajectory is peculiarly jagged, the likely culprit is the time150

step. In this case, increase the number of internal time steps per time step (ndt), via adding151

sim_args to your calibrate() call, e.g. sim_args = list(ndt=2).152

You may need to experiment with ndt to get a smooth result.153

6 Scenario exploration154

Typically, after calibrating to observed data, you are likely to be interested in forecasting155

what might happen in the future, under various scenarios of possible changes in control156

measures/policies. Here, we give an example involving changing the transmission rate (β)157

in the future.158

First we load some data manipulation packages for convenience.159

library(zoo)

library(tidyverse)

Now we modify the run_sim example (Section 3). We first check that setting Relative_value=1160

and using non-timevar run_sim yield the same results.161

params <- read_params("ICU1.csv")
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pp <- fix_pars(params, target = c(R0 = 1.3, Gbar=6))

state <- make_state(params=pp)

startdate <- as.Date("2020-01-01")

enddate <- as.Date("2020-10-01")

This is checking if we can get the same thing if we don’t add stoch:162

sim0 <- run_sim(pp,state,start_date=startdate,end_date=enddate)

gg0 <- (ggplot(sim0,aes(x=date))

+ geom_point(aes(y=incidence))

)

print(gg0)
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We want a dataframe that includes the time varying relative β at each saved time point. If164

relative β is constant though time, it should give back the same trajectory.165

time_pars <- data.frame(Date=as.Date(startdate:enddate)

, Symbol="beta0"

, Relative_value=1

)

# , stringsAsFactors=FALSE)

This fits a timevar dataframe where beta0=1:166
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sim0_t <- update(sim0, params_timevar=time_pars)

print(gg0

+ geom_point(data=sim0_t, aes(x=date,y=incidence), color="red")

)
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Now, as an example, we set relative β to drop by a factor of 2 (linearly) between 1 July168

2020 and 1 Oct 2020.169

lockdown <- as.Date("2020-07-01")
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time_pars2 <-

data.frame(Date=as.Date(startdate:enddate)

, Symbol="beta0"

, Relative_value =

c(rep(1, length(startdate:lockdown)-1)

, seq(1,0.5,length.out = length(lockdown:enddate))

)

)

##print(time_pars2)

head(time_pars2)

#> Date Symbol Relative_value

#> 1 2020-01-01 beta0 1

#> 2 2020-01-02 beta0 1

#> 3 2020-01-03 beta0 1

#> 4 2020-01-04 beta0 1

#> 5 2020-01-05 beta0 1

#> 6 2020-01-06 beta0 1

sim0_t_reduce <- update(sim0, params_timevar=time_pars2)

gg_rel_beta <- (ggplot(time_pars, aes(x=Date))

+ geom_point(aes(y=Relative_value))

+ geom_point(data=time_pars2, aes(x=Date, y=Relative_value), color="red")

)

We can now look at the relative value of β in each scenario, and the corresponding forecasted170

epidemic curves.171

print(gg_rel_beta)
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print(gg0

+ geom_point(data=sim0_t_reduce, aes(x=date,y=incidence), color="red")

)
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