sf
(“simple features”): tidy spatial data (web page)maptools
e.g.
akima
does bicubic/bilinear)RColorBrewer
packagesf
(“simple features”): tidy spatial data (web page)maptools
maps
(base-R maps, some basic spatial data sets)ggmap
(maps in ggplot, including downloading data from google maps etc.)leaflet
(map widget)tmap
(an alternative ggplot-like approach: see here)mapcan
(political maps for Canada)Bivand, Roger S., Edzer Pebesma, and Virgilio Gómez-Rubio. 2013. Applied Spatial Data Analysis with R. 2nd ed. New York: Springer.
Bolin, David, and Finn Lindgren. 2017. “Quantifying the Uncertainty of Contour Maps.” Journal of Computational and Graphical Statistics 26 (3): 513–24. https://doi.org/10.1080/10618600.2016.1228537.
Correll, Michael, Dominik Moritz, and Jeffrey Heer. 2018. “Value-Suppressing Uncertainty Palettes.” In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, 1–11. Montreal QC Canada: ACM. https://doi.org/10.1145/3173574.3174216.
Höhle, Michael. 2016. “Cartograms with R.” Theory Meets Practice. http://staff.math.su.se/hoehle/blog/2016/10/10/cartograms.html.
Koo, Hyeongmo, Yongwan Chun, and Daniel A. Griffith. 2018. “Geovisualizing Attribute Uncertainty of Interval and Ratio Variables: A Framework and an Implementation for Vector Data.” Journal of Visual Languages & Computing 44: 89–96.
MacEachren, Alan M., Anthony Robinson, Susan Hopper, Steven Gardner, Robert Murray, Mark Gahegan, and Elisabeth Hetzler. 2005. “Visualizing Geospatial Information Uncertainty: What We Know and What We Need to Know.” Cartography and Geographic Information Science 32 (3): 139–60.
Perrier, Victor. 2019. “dreamRs/Topogram.” dreamRs. https://github.com/dreamRs/topogram.