September 2021
General introduction to data viz principles and tools
git add foo.rmd)git cloneFile > New Project > Version Control > Git > fill in name from “Clone” button on GHgit pull)
git add)
git commit)
git push)
filter(x,condition): choose rows equivalent to subset(x,condition) or x[condition,] (with non-standard evaluation)select(x,condition): choose columns
subset(x,select=condition) or x[,condition]starts_with(), matches()mutate(x,var=...): change or add variables (equivalent to x$var = ... or transform(x,var=...)group_by(): adds grouping informationsummarise(): collapses variables to a single valuex <- group_by(x,course) summarise(x,mean_score=mean(score),sd_score=sd(score))
d_split <- split(d,d$var) ## split d_proc <- lapply(d_split, ...) ## apply d_res <- do.call(rbind,d_proc) ## combine
%>% operator (orig. from magrittr package)(d_input
%>% select(row1,row2)
%>% filter(cond1,cond2)
%>% mutate(...)
) -> d_output
tib[,"column1"] is still a tibble)tidyr package)dotwhisker package)Cleveland, W. 1993. Visualizing Data. Summit, NJ: Hobart Press.
Gelman, A et al. 2002.. The American Statistician 56 (2): 121–130. http://www.tandfonline.com/doi/abs/10.1198/000313002317572790.
Wickham, H et al. 2010.. IEEE Transactions on Visualization and Computer Graphics 16 (6) (November): 973–979. doi:10.1109/TVCG.2010.161.