intro material

Ben Bolker

September 2021

Course structure

Course goals

General introduction to data viz principles and tools

Course structure

Tools

Version control

Basic Git workflow with RStudio


tidyverse

tidyverse: big ideas

tidyverse: new verbs

tidyverse: split-apply-combine

x <- group_by(x,course)
summarise(x,mean_score=mean(score),sd_score=sd(score))
d_split <- split(d,d$var)       ## split
d_proc <- lapply(d_split, ...)  ## apply
d_res <- do.call(rbind,d_proc)  ## combine

tidyverse: piping

(d_input
    %>% select(row1,row2)
    %>% filter(cond1,cond2)
    %>% mutate(...)
) -> d_output

tidyverse: tibbles

tidyverse: reshaping (tidyr package)

types of data visualization

exploratory

diagnostic

inferential

expository: data-viz

presentation: info-viz

dashboards

dynamic

References

Cleveland, W. 1993. Visualizing Data. Summit, NJ: Hobart Press.

Gelman, A et al. 2002.. The American Statistician 56 (2): 121–130. http://www.tandfonline.com/doi/abs/10.1198/000313002317572790.

Wickham, H et al. 2010.. IEEE Transactions on Visualization and Computer Graphics 16 (6) (November): 973–979. doi:[10.1109/TVCG.2010.161](https://doi.org/10.1109/TVCG.2010.161).